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Abstract

The oscillator package within the GINGER FEL sim-
ulation code has now been extended to include angle-
dependent reflectivity properties of Bragg crystals. Pre-
viously, the package was modified to include frequency-
dependent reflectivity in order to model x-ray FEL oscilla-
tors[1] from start-up from shot noise through to saturation.
We present a summary of the algorithms used for model-
ing the crystal reflectivity and radiation propagation out-
side the undulator, discussing various numerical issues rel-
evant to the domain of high Fresnel number and efficient
Hankel transforms. We give some sample XFEL-O simu-
lation results obtained with the angle-dependent reflectivity
model, with particular attention directed to the longitudinal
and transverse coherence of the radiation output.

INTRODUCTION

There has been increasing interest in driving advanced
light sources at x-ray wavelengths using electron beams
from extremely high repetition rate, high brightness, su-
perconducting accelerators as the electron beam. For MHz
and higher repetition rates, FEL’s in oscillator configura-
tions become very attractive, presuming appropriate fo-
cusing and reflective optics are available at the necessary
wavelength. One possibility is based on using Bragg crys-
tals at hard x-ray photon energies [2] for which the net re-
flectivity per pass can approach 90% or greater. Over the
last couple years we have done extensive numerical mod-
eling of XFEL-O configurations using the axisymmetric
(r — z), polychromatic FEL simulation code GINGER for
which an oscillator physics package, including propagation
within an optical cavity with mirrors, had been written and
used in the mid-1990’s (see, e.g., [3] ). While the origi-
nal package had extremely fast execution times as it was
contained within the main code itself (unlike the OPC ex-
tension to GENESIS [4]), it treated mirrors as having sim-
ple angle- and wavelength-independent reflectivity R. As
reported previously [5], we added a a A-dependent mir-
ror reflectivity model in GINGER and used this to exam-
ine the predicted output properties for a standard XFEL-O
configuration. We have now further extended the oscillator
package so that R is now a function simultaenously of both
A and incident angle 6. This new advance is significantly
more complicated in terms of the necessary mathematical
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algorithm and the required structural changes to the code.
In the remainder of this paper, we first give some details of
the algorithm and other changes to GINGER, then discuss
some sample oscillator results at 14.4keV photon energy,
and conclude with a brief summary.

IMPLEMENTATION OF THE A- AND
0-DEPENDENT REFLECTIVITY MODEL

The original GINGER oscillator physics package pre-
sumes a constant mirror reflectivity and uses a Huygens
integral method (see Eq. 16.94 in [6]) to transport the out-
going FEL radiation from the undulator exit to the various
mirror surfaces and back to the undulator entrance. At the
beginning of the simulation, the code calculates the com-
plex matrix T;; with

Eentrance (Ti7 t) = Z Tij Eemit (r;‘7 t) (1)
J

where index ¢ refers to undulator entrance and j to undu-
lator exit. The matrix 7" includes effects due to mirror cur-
vature, mirror holes, and free space propagation. Imper-
fect reflectivity (i.e., |R?| < 1) is currently presumed spa-
tially to have a constant value over the non-holey mirror
surfaces. Note that for the case that R is solely a func-
tion Ry (r) of position (and not of angle of incidence), the
matrix 7" and the underlying Huygens integral are defined
completely in configuration space so no transforms to ei-
ther the frequency or transverse wavenumber domain are
necessary for evaluation.

Even before considering wavelength and angle-
dependent reflectivity, the relatively low pass-to-pass gain
and large Fresnel numbers relevant to many XFEL-O
configurations posed numerical difficulties due to the
oscillatory nature of the Huygens integral kernel

7' Jo(ksrr' /L) exp [iks(r® +r'?) /2L ] )

Here 7’ is the source point, r the observation point, L
the effective longitudinal separation, and k¥ = 27/), the
wavenumber corresponding to FEL resonance. Following a
suggestion in [7], we overcame this problem by reexpress-
ing Jo(z) = %[Hél)(x) + H{? ()] for z > 3 where Hy is
the Hankel function. For large z, this subsitution isolates
the fast oscillation term of .Jy and makes accurate numeri-
cal integration over 7’ far more easy. Within the undulator,
GINGER uses a radially non-uniform grid for the FEL radi-
ation calculations; the intermediate gridding on the mirror
surfaces is also typically non-uniform in order to maximize



computational efficiency and accuracy. For Np ~ 128 ra-
dial grid cells within the undulator and ~ 256 cells on the
mirror surfaces (the latter number is relevant only to the
one-time calculation of 7;;), we found that numerical prop-
agation losses could be limited to 0.2% or less per pass.
Even if one needs to use 512 or greater zones to grid the
mirror surfaces, this only affects the size of the intermedi-
ate matrices needed for the one-time calculation of 7" but
not the actual size of T itself.

Normally the GINGER code operates completely in the
time-domain, with all spectral decomposition done only af-
ter completion of the FEL simulation by a completely sepa-
rate post-processor code. However, our extension last year
to a A-dependent Bragg crystal reflectivity model required
that after each and every oscillator pass a Fourier transform
from E(t) to E(\) be done at each radial grid zone, fol-
lowing which the complex R(r,\) = Ro(r) X Rc(\) is
applied once per crystal surface, and then finally the resul-
tant E/(r’, \) is transformed back to the time domain. Since
this is done only once per pass, the computational cost is
fairly negligible. The complex R.()) is read in as a simple
lookup table at the beginning of the simulation with linear
interpolation done between table values. Moreover, since
R.(X) was presumed to be r— and angle-independent, the
T calculated for the nominal case of A—independent R (r)
can be used unchanged in the A— domain other than multi-
plication by the r—independent R.(\).

Extension to a full Rc(A,6) crystal reflectivity model
is significantly more complex because the 6 dependence is
not independent of A and visa-versa. Referring to Fig. 1,
one sees for the XFEL-O configuration currently of most
interest to us that the undulator exit-to-entrance propaga-
tion path has a central portion involving Bragg crystals, and
outer portions involving simple grazing-incidence focusing
optics (currently presumed to have A- and 6-independent
reflectivity). Consequently, the transfer matrices for each
of the two outer portions can be calculated using the orig-
inal Huygens integral methods. By contrast, the cen-
tral region with angle- and A-dependent crystal reflectiv-
ity requires propagation in the frequency and transverse
wavenumber p; = k46 domains. Propagation from 2’ to 2z
is then simply

E(\py,z) =exp(ip? (z — 2')/2ks) x R(A\,p1) x

E\pL,?) 3

Since a Hankel transform pair must be done on every pass
for each X of interest, we adopted the pseudo-fast Hankel
transform methods (which exploit a special mathematical
convolution of H(s) on an exponential grid) described in
Refs. [8] and [9] for computational speed. Good numer-
ical accuracy required ~ 512 grid points in p; and r (at
the crystal surfaces) over a full range of 10* in scale. Since
this is typically much greater than the number of radial grid
zones (N < 128) within the undulator, for computational
efficiency we transform E(r,t) to the frequency domain
immediately upon exit from the undulator and do not trans-
form back to the time domain until undulator entrance for
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Figure 1: XFEL-O configuration with four Bragg crystal
reflections on the return path.

2.0 R
1.0
1.0 0.75
0.5
~<
< 0.25
3 0.0
0.0
-1.0
-2.0
—6.0 -3.0 0.0 3.0 6.0

AO (prad)

Figure 2: Absolute value of reflectivity plotted as function
of angle of incidence and wavelength (in units of 10~%).

the next pass. This thus requires 2Nr FFT’s of length NV,
the number of photon slices in time. Because only a lim-
ited number of frequency points have any significant crys-
tal reflectivity, it is only for these points for which we must
do the Hankel transform pair; points outside the reflectiv-
ity region had E(\,r) set to zero. Altogether, one must
do approximately 2e N; Hankel transforms of length 512
with € = 1/4. We implemented a simple bilinear lookup
scheme in a simple R(\,p, ) table input at the beginning
of the simulation run.

Although the necessity of Hankel transforms has re-
quires additional computation relative to a simple R(\)
function, the overall computation time is still heavily dom-
inated by the “normal” FEL simulation within the undula-
tor since typically 100 or more z steps are required. In the
future we may explore the "FHA” transform triplet as an
alternative to doing direct Hankel transforms but it is un-
clear if this will either increase the speed or accuracy sig-
nificantly, in particular because of the need to do an Abel
transform on a cyclindrical grid.

AN EXAMPLE OF A GINGER 14.4-KEV
XFEL-O SIMULATION

We used the new capabilities of the code to model startup
from noise of an XFEL oscillator at 14.4 keV photon en-
ergy designed around the C337 peak reflectivity proper-
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Figure 3: Intracavity pulse energy (left) for a sample 14-
keV XFEL-O example and the time-integrated far field an-
gle (right) of the intracavity radiation as a function of pass
number.

ties of diamond Bragg crystals. The electron beam prop-
erties were: I = 20A, oy = 1ps in a Gaussian profile,
E =7GeV,0p = 1.4MeV, and €| xy = 0.2 mm-mrad.
The linearly-polarizded undulator had an RMS K of 0.974
and a period of 16.56 mm. The 1-mm diameter focusing
mirrors had R. = 52m and were separated by 100 m.
The simulation grid had Az = 50mm and used a slice
separation of 40 fs. For the Hankel transforms, there were
768 points in 7 and p, ; this is equivalent to a 1.25% in-
crease from grid point to grid point on the exponential grid.
We should mention that we artificially removed the linear
term in ¢(t) corresponding to the crystal reflectivity that
produces an effective delay in radiation arrival time from
pulse to pulse. Physically, one would compensate for this
delay by shortening the return path in the cavity. Typical
CPU run times for 100 passes were ~ 1 hour on a 2010-era
single processor (unlike the amplifier coding, the oscillator
package in GINGR currently cannot run in parallel).

Figures 3 through 5 show various diagnostics quanti-
ties for the GINGER simulation. The growth of intracav-
ity pulse energy versus pass number are shown in Fig. 3.
One sees a growth rate of ~ 25% per pass with saturation
occurring after about 80 passes. Similarly, the RMS far
field angle of the radiation (integrated temporally over the
pulse) drops down to an value of about 1.3 microradians
after 25 passes, well within the envelope corresponding to
the reflectivity acceptance shown in Fig. 2. The temporal
profile (Fig. 4a) out the intracavity power at pass 100 is
quite smooth with noticeable asymmetry from head to tail.
Time-resolved diagnostics of the radial intensity (Fig. 4b)
and phase profiles show excellent beam quality with M?
of 1.1 or less and 99.9% of the power in the lowest order
TEMOO mode. This too would be expected from the limited
angular reflectivity of the Bragg crystals. Figure 5 shows
snapshots of the power spectra at various passes on a semi-
log scale. By pass 36 the spectrum is quite clean and has a
normalized bandwidth of below 10~7. So, within the obvi-
ous caveat that these simulations have not included degra-
dation effects such as mirror distortions and surface rough-
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Figure 4: Temporal and radial power profile for pass 101
as measured in the center of the undulator.

ness, unwanted tilts, and undulator field errors, the results
suggest that extremely high quality FEL output is possible
in theory presuming the electron beam has the necessary
6D brightness to support XFEL-O lasing.

SUMMARY

In this paper we have discussed some of the changes
made to GINGER to allow modeling of XFEL oscillator
configurations employing Bragg crystal reflectors. In par-
ticular we have extended the cavity propagation algorithm
to include wavelength- and angle-dependent reflectivity.
This change required the introduction of Hankel transforms
and improved evaluation of the Huygens Integral due to the
high Fresnel number associated with the XFEL-O design.
Application to a standard test case shows quite high quality
output, both in terms of longitudinal and transverse coher-
ence.
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Radiation Power Spectra Snapshots
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Figure 5: Snapshots of spectra at various pass numbers; note the semilog scale. The central wavelength in the simulation
was 0.86A (14.4 keV).



